初中数学——九大几何模型

初中数学——九大几何模型

ID:7469256

大小:85.41 KB

页数:11页

发布时间:2023-08-25 18:17:03

初中数学——九大几何模型_第1页
初中数学——九大几何模型_第2页
初中数学——九大几何模型_第3页
初中数学——九大几何模型_第4页
初中数学——九大几何模型_第5页
资源描述:

初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB和△OCD均为等边三角形;【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(2)等腰直角三角形【条件】:△OAB和△OCD均为等腰直角三角形;【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(3)顶角相等的两任意等腰三角形【条件】:△OAB和△OCD均为等腰三角形;且∠COD=∠AOB【结论】:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED,二、模型二:手拉手模型----旋转型相似(1)一般情况【条件】:CD∥AB,将△OCD旋转至右图的位置【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;②延长AC交BD于点E,必有∠BEC=∠BOA(2)特殊情况【条件】:CD∥AB,∠AOB=90°将△OCD旋转至右图的位置【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;②延长AC交BD于点E,必有∠BEC=∠BOA;③tan∠OCD;④BD⊥AC;⑤连接AD、BC,必有;⑥三、模型三、对角互补模型(1)全等型-90°更多资料及电子版在公众号:学习笔记君【条件】:①∠AOB=∠DCE=90°;②OC平分∠AOB【结论】:①CD=CE;②OD+OE=OC;③证明提示:①作垂直,如图2,证明△CDM≌△CEN②过点C作CF⊥OC,如图3,证明△ODC≌△FEC※当∠DCE的一边交AO的延长线于D时(如图4):以上三个结论:①CD=CE;②OE-OD=OC;③,(1)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC平分∠AOB【结论】:①CD=CE;②OD+OE=OC;③证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB上取一点F,使OF=OC,证明△OCF为等边三角形。(2)全等型-任意角ɑ【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE;【结论】:①OC平分∠AOB;②OD+OE=2OC·cosɑ;③※当∠DCE的一边交AO的延长线于D时(如右下图):原结论变成:①;②;③。可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。,对角互补模型总结:①常见初始条件:四边形对角互补,注意两点:四点共圆有直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③注意OC平分∠AOB时,∠CDE=∠CED=∠COA=∠COB如何引导?四、模型四:角含半角模型90°(1)角含半角模型90°---1【条件】:①正方形ABCD;②∠EAF=45°;【结论】:①EF=DF+BE;②△CEF的周长为正方形ABCD周长的一半;也可以这样:【条件】:①正方形ABCD;②EF=DF+BE;【结论】:①∠EAF=45°;(2)角含半角模型90°---2【条件】:①正方形ABCD;②∠EAF=45°;【结论】:①EF=DF-BE;,(1)角含半角模型90°---3【条件】:①Rt△ABC;②∠DAE=45°;【结论】:(如图1)若∠DAE旋转到△ABC外部时,结论仍然成立(如图2)(2)角含半角模型90°变形【条件】:①正方形ABCD;②∠EAF=45°;【结论】:△AHE为等腰直角三角形;证明:连接AC(方法不唯一)∵∠DAC=∠EAF=45°,∴∠DAH=∠CAE,又∵∠ACB=∠ADB=45°;∴△DAH∽△CAE,∴∴△AHE∽△ADC,∴△AHE为等腰直角三角形模型五:倍长中线类模型(1)倍长中线类模型---1【条件】:①矩形ABCD;②BD=BE;③DF=EF;【结论】:AF⊥CF,模型提取:①有平行线AD∥BE;②平行线间线段有中点DF=EF;可以构造“8”字全等△ADF≌△HEF。(1)倍长中线类模型---2【条件】:①平行四边形ABCD;②BC=2AB;③AM=DM;④CE⊥AB;【结论】:∠EMD=3∠MEA辅助线:有平行AB∥CD,有中点AM=DM,延长EM,构造△AME≌△DMF,连接CM构造等腰△EMC,等腰△MCF。(通过构造8字全等线段数量及位置关系,角的大小转化)模型六:相似三角形360°旋转模型(1)相似三角形(等腰直角)360°旋转模型---倍长中线法【条件】:①△ADE、△ABC均为等腰直角三角形;②EF=CF;【结论】:①DF=BF;②DF⊥BF辅助线:延长DF到点G,使FG=DF,连接CG、BG、BD,证明△BDG为等腰直角三角形;突破点:△ABD≌△CBG;难点:证明∠BAO=∠BCG(2)相似三角形(等腰直角)360°旋转模型---补全法【条件】:①△ADE、△ABC均为等腰直角三角形;②EF=CF;【结论】:①DF=BF;②DF⊥BF辅助线:构造等腰直角△AEG、△AHC;辅助线思路:将DF与BF转化到CG与EF。,(1)任意相似直角三角形360°旋转模型---补全法【条件】:①△OAB∽△ODC;②∠OAB=∠ODC=90°;③BE=CE;【结论】:①AE=DE;②∠AED=2∠ABO辅助线:延长BA到G,使AG=AB,延长CD到点H使DH=CD,补全△OGB、△OCH构造旋转模型。转化AE与DE到CG与BH,难点在转化∠AED。(2)任意相似直角三角形360°旋转模型---倍长法【条件】:①△OAB∽△ODC;②∠OAB=∠ODC=90°;③BE=CE;【结论】:①AE=DE;②∠AED=2∠ABO辅助线:延长DE至M,使ME=DE,将结论的两个条件转化为证明△AMD∽△ABO,此为难点,将△AMD∽△ABC继续转化为证明△ABM∽△AOD,使用两边成比例且夹角相等,此处难点在证明∠ABM=∠AOD模型七:最短路程模型(1)最短路程模型一(将军饮马类)总结:右四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短:解决;特点:①动点在直线上;②起点,终点固定,(1)最短路程模型二(点到直线类1)【条件】:①OC平分∠AOB;②M为OB上一定点;③P为OC上一动点;④Q为OB上一动点;【问题】:求MP+PQ最小时,P、Q的位置?辅助线:将作Q关于OC对称点Q’,转化PQ’=PQ,过点M作MH⊥OA,则MP+PQ=MP+PQ’MH(垂线段最短)(2)最短路程模型二(点到直线类2)【条件】:A(0,4),B(-2,0),P(0,n)【问题】:n为何值时,最小?求解方法:①x轴上取C(2,0),使sin∠OAC=;②过B作BD⊥AC,交y轴于点E,即为所求;③tan∠EBO=tan∠OAC=,即E(0,1),(1)最短路程模型三(旋转类最值模型)【条件】:①线段OA=4,OB=2;②OB绕点O在平面内360°旋转;【问题】:AB的最大值,最小值分别为多少?【结论】:以点O为圆心,OB为半径作圆,如图所示,将问题转化为“三角形两边之和大于第三边,两边之差小于第三边”。最大值:OA+OB;最小值:OA-OB【条件】:①线段OA=4,OB=2;②以点O为圆心,OB,OC为半径作圆;③点P是两圆所组成圆环内部(含边界)一点;【结论】:若PA的最大值为10,则OC=6;若PA的最小值为1,则OC=3;若PA的最小值为2,则PC的取值范围是0

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1、本文档共11页,下载后即可获取全部内容。
2、此文档《初中数学——九大几何模型》由用户()提供并上传付费之前 请先通过免费阅读内容等途径辨别内容,本站所有文档下载所得的收益全部归上传人(卖家)所有:如有侵权或不适当内容,请进行举报或申诉。
3、所有的PPT和DOC文档都被视为“模板”允许上传人保留音节日灵结构的情况下删减部份的内容,下裁前须认直查看,确认无误后再购买。
4、万象文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护外理,无法对各卖家所售文档的直实性,完整性,准确性以及专业性等问题提供审核和保证,请谨慎购买。
5、本站文档的总页数,文档格式和文档大小以系统显示为准(内容中显示页数不一定正确),网站客服只以系统显示页数,文件格式,文档大小作为仲裁依据。

文档提供

发布者:

上传时间:2023-08-25 18:17:29

认证主体:(个人认证)

相关标签