第二文库

全部分类
  • 教育资源>
    教育资源
    幼儿/小学教育 中学教育 高等教育 外语学习 资格/认证考试 试卷课件 医学课件 商业培训 职业培训课件 PDF书籍 医学课件
  • IT计算机/网络资源>
    IT计算机/网络资源
    计算机应用/办公自动化 .NET 数据结构与算法 Java SEO/搜索引擎优化 C/C++资料 linux/Unix相关 手机/mobile开发 云计算/并行计算 嵌入式开发/单片机 Windows相关 软件工程 管理信息系统 开发文档 网络与通信 网络安全 电子支付 Python Delphi/Per Flash/Flex CSS/Script 计算机原理 PHP资料 数据挖掘与识别 Web服务 数据库 电子商务 人工智能 多媒体应用 计算机硬件与维护 网页设计/UI 网吧管理 其它相关文档
  • 实用文档>
    实用文档
    工作报告 工作总结 工作计划 管理表格 简历模板 财务报表 合同范本 协议书范本 笔试真题 营销方案 演讲稿 会议纪要 证明文件 设计文档 HR管理 申请书
  • 学术论文>
    学术论文
    毕业论文 期刊/会议论文 管理论文 社科论文 文学论文 开题报告 经济论文 法律论文 医学论文 哲学论文 艺术论文 通讯论文 自然科学论文 论文指导/设计 其它论文
  • 行业资料>
    行业资料
    食品饮料 化学工业 展会/博览会 国内外标准规范 纺织服装 家居行业 酒店餐饮 物流与供应链 室内设计 工业设计 家电行业 生活/日用品 航海/船舶 水产/渔业 传媒/媒体 公共安全/评价 畜牧/养殖 林业/苗木 园艺/花卉 农作物 轻工业/手工业 零售业 水利工程 农业工程 系统集成 冶金工业 金属学与工艺 社会学 武器工业 能源与动力工程 原子能技术 文化创意 航空/航天 石油/天然气工业 矿业工程 交通运输 旅游娱乐 实验/测试 其它行业文档
  • 资格认证/考试资源>
    资格认证/考试资源
    公务员考试 专升本考试 建造师考试 教师资格考试 成考 自考 司法考试 微软认证 网络工程师认证 注册会计师 医师/药师资格考试 会计职称考试 报关员资格考试 人力资源管理师 安全工程师考试 出国培训 资产评估师考试 技工职业技能考试 银行/金融从业资格 计算机等级考试 营养师认证 物流师考试 证券从业资格考试 注册税务师 理财规划师 建筑师考试 质量管理体系认证 其它考试类文档
  • 电子/通信>
    电子/通信
    电子设计/PCB 电子电气自动化 数据通信与网络 光网络传输 无线电电子学/电信技术 网规网优 核心网技术 运营商及厂商资料 WiMAX技术 TD-SCDMA技术 3G/4G及新技术 CDMA95/CDMA2000/EV技术 WCDMA技术 GSM/GPRS/EDGE 天线/微波/雷达 监控/监视 室内分布 视频会议 考试/面试试题 综合/其它
  • 金融/证券>
    金融/证券
    行业分析 投融资/租赁 金融资料 股票中长线技巧 财经资料 股票短线技巧 保险 期货 股票报告 股票经典资料 股票技术指标学习 宏观经济 外文报告 金融/其它
  • 源码区>
    源码区
    源码集
  • 大杂烩/其它>
    大杂烩/其它
    大杂烩/其他
  • 换一换
    首页 第二文库 > 资源分类 > PDF文档下载
     

    小学奥数举一反三六年级1--40讲.pdf

    • 资源ID:3645       资源大小:1.62MB        全文页数:141页
    • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:10金币 【人民币10元】
    快捷注册下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    下载资源需要10金币 【人民币10元】
    邮箱/手机:
    温馨提示:
    支付成功后,系统会自动生成账号(用户名和密码都是您填写的邮箱或者手机号),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载资源
     
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

    小学奥数举一反三六年级1--40讲.pdf

    六年级数学奥数培训资料 -1- 第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如*、、等,这是与四则运算中的“、、、”不同的。新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。二、精讲精练 【例题1】假设a*baba-b,求13*5和13*(5*4)。【思路导航】这题的新运算被定义为a*b等于a和b两数之和加上两数之差。这里的“*”就代表一种新运算。在定义新运算中同样规定了要先算小括号里的。因此,在13*(5*4)中,就要先算小括号里的(5*4)。练习11.将新运算“*”定义为a*baba-b.。求27*9。2.设a*ba22b,那么求10*6和5*(2*8)。3.设a*b3ab1/2,求(25*12)*(10*5)。【例题2】设p、q是两个数,规定pq4 q-pq2。求346。【思路导航】根据定义先算46。在这里“”是新的运算符号。练习21设p、q是两个数,规定pq4q(pq)2,求5(64)。2设p、q是两个数,规定pqp2(pq)2。求30(53)。3设M、N是两个数,规定M*NM/NN/M,求10*201/4。【例题3】如果1*5111111111111111,2*42222222222,3*3333333,4*2444,那么7*4________;210*2________。【思路导航】经过观察,可以发现本题的新运算“*”被定义为。因此3463【46(46)2】319419(319)2761165 7*477777777778638210*2210210210210420 13*5(135)(13-5)188265*4(54)(5-4)1013*(5*4)13*10(1310)(13-10)26 六年级数学奥数培训资料 -2- 练习31如果1*5111111111111111,2*42222222222,3*3333333,那么4*4________。2规定, 那么8*5________。3如果2*11/2,3*21/33,4*31/444,那么(6*3)(2*6)________。【例题4】规定123,234,345,456,如果1/1/1/A,那么,A是几【思路导航】这题的新运算被定义为(a1)a(a1),据此,可以求出1/1/1/(567)1/(678),这里的分母 都比较大,不易直接求出结果。根据1/1/1/A,可得出A1/1/1/(1/1/)/1。即练习41规定123,234,345,456,如果1/1/1/A,那么A________。2规定234,345,456,567,如果1/1/1/,那么________。3如果1212,23234,565678910,那么x354中,x________。【例题5】设ab4a2b1/2ab,求z(4 1)34中的未知数x。【思路导航】先求出小括号中的4144-211/24116,再根据x164x2161/2x1612x32,然后解方程12x3234,求出x的值。列算式为练习51设ab3a2b,已知x(41)7求x。2对两个整数a和b定义新运算“”ab ,求6498。3对任意两个整数x和y定于新运算,“*”x*y (其中m是一个确定的整数)。如果1*21,那么3*12________。 A(1/1/)1/(1/1/)/1(678)/(567)11又3/513/5 4144-211/24116x164x2161/2x1612x3212x323412x66x5.5 六年级数学奥数培训资料 -3- 第2讲 简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。二、精讲精练【例题1】计算4.75-9.63(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质abca(bc),使运算过程简便。所以原式4.758.259.631.3713(9.631.37)1311 2练习1计算下面各题。16.732又8/17(3.271又9/17)2.7又5/9(3.81又5/9)1又1/53.14.15(7又7/86又17/20)2.1254.13又7/13(4又1/43又7/13)0.75【例题2】计算333387又1/27979066661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。所以原式333387.57979066661.2533338.7579079066661.25(33338.7566661.25)790 10000079079000000练习2计算下面各题1.3.51又1/41251又1/24/52.9750.259又3/4769.753.9又2/54254.251/604.0.99990.70.11112.7【例题3】计算361.091.267.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知361.230。这样一转化,就可以运用乘法分配律了。所以原式1.2301.091.267.3 1.2(301.091.267.3) 六年级数学奥数培训资料 -4- 1.2(32.767.3)1.2100120练习3计算1.452.081.537.62.5211.12.67783.481.081.256.84.722.091.873.6【例题4】计算3又3/525又2/537.96又2/5【思路导航】虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把37.9分成25.4和12.5两部分。当出现12.56.4时,我们又可 以将6.4看成80.8,这样计算就简便多了。所以原式3又3/525又2/5(25.412.5)6.43又3/525又2/525.46.412.56.4(3.66.4)25.412.580.825480334练习4计算下面各题16.816.819.33.22139137/1381371/13834.457.845.35.6 【例题5】计算81.515.881.551.867.618.5【思路导航】先分组提取公因数,再第二次提取公因数,使计算简便。所以原式81.5(15.851.8)67.618.581.567.667.618.5(81.518.5)67.610067.66760练习5153.535.353.543.278.546.5223512.123542.213554.333.757353/8573016.262.5 六年级数学奥数培训资料 -5- 第3讲 简便运算(二)一、知识要点计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。二、精讲精练【例题1】计算1234234134124123【思路导航】整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有原式11111211113111141111(1234)1111101111 11110练习112345634562456235623462345245678567846784578456845673124.68324.68524.68724.68924.68【例题2】计算2又4/523.411.157.66.5428【思路导航】我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算。所以原式2.823.42.865.411.187.22.8(23.465.4)88.87.22.888.888.87.2 88.8(2.87.2)88.810888练习2计算下面各题199999777783333366666234.576.53456.421231.4537713255999510【例题3】计算(199319941)/(199319921994)【思路导航】仔细观察分子、分母中各数的特点,就会发现分子中19931994可变形为19921)1994199219941994,同时发现199411993,这样就可以把原式转化成分子与分母相同,从而简化运算。所以 原式【(19921)19941】/(199319921994) 六年级数学奥数培训资料 -6- (1992199419941)/(199319921994)1练习3计算下面各题1(362548361)/(362548186)2(198819891987)/(198819891)3(2045841991)/(1992584380)1/143【例题4】有一串数1,4,9,16,25,36.它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少【思路导航】这串数中第2000个数是20002,而第2001个数是20012,它们相差2001220002,即2001220002 200120002000220012000(20012000)2001200020014001练习4计算11991219902 29999219999 39992746274【例题5】计算(9又2/77又2/9)(5/75/9)【思路导航】在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多。原式(65/765/9)(5/75/9)【65(1/71/9)】【5(1/71/9)】 65513练习5计算下面各题1(8/91又3/76/11)(3/115/74/9)2(3又7/111又12/13)(1又5/1110/13)3(96又63/7336又24/25)(32又21/7312又8/25) 六年级数学奥数培训资料 -7- 第4讲 简便运算(三)一、知识要点在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。二、精讲精练【例题1】计算(1)444537 (2)271526(1) 原式(1145 )37 1371453737374536845练习1用简便方法计算下面各题1. 14158 2. 225126 3. 3511364. 737475 5. 199719981999 【例题2】计算7311518原式(721615)18721816151892159215 (2) 原式(261)15262615261526151526151526 六年级数学奥数培训资料 -8- 练习2计算下面各题1. 6411719 2. 221201213. 175716 4. 411334511445【例题3】计算15273541原式3593541 35(941)355030练习3计算下面各题1. 14393427 2. 16355617 3. 1855851810【例题4】 计算5611359213518613原式1651329513618513(1629618)5131318513518练习4计算下面各题 1 1174951719 2. 1734371667112 六年级数学奥数培训资料 -9- 3597916175019 19517 4. 51738115716115312【例题5】计算(1)16612041 (2)1998199819981999解 (1)原式(1642120)4116441412041412041 20练习5计算下面各题1. 542517 2. 238238238239 3. 16311341139第5讲 简便运算(四)一、知识要点前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简便运算。 运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。一般地,形如 1aa1的分数可以拆成1a1a1;形如 1a(an)的分数可以拆成1n(1a1an),形如abab的分数可以拆成1a1b等等。同学们可以结合例题思考其中的规律。二、精讲精练【例题1】计算 112 123 134 199100原式(11 2)(12 13)(1314)(1991100)11212131314 1991100 (2)原式1998199819991998199919981998200019991998 19991998200019992000 六年级数学奥数培训资料 -10- 1110099100练习1计算下面各题1. 145 156 167 139402. 11011 11112 11213 11314 114153. 1216112120 130142 4. 116142156172【例题2】计算 124 146 168 14850原式( 224 246 268 24850)12【(1214)(1416)(1618)(148150)】12【12150】126 25练习2计算下面各题1. 135 157 179 19799 2. 114 147 1710 1971003. 115 159 1913 13337 4.1412817011301208【例题3】计算113712920113013421556 原式113(1314)(1415)(1516)(1617)(1718) 六年级数学奥数培训资料 -11- 11313141415 15161617171811878练习3计算下面各题1.1125671292011302.11492011301342 1556 3.199812199823199834 1998451998564.671292061130 6【例题4】计算121418116132164原式(121418116 132164164)164116463 64练习4计算下面各题1. 12141812562. 2329227281 22433. 9.699.6999.69999.699999.6【例题5】计算(11 21314)(12131415)(112131415)(121314)设1121314a 121314b 六年级数学奥数培训资料 -12- 原式a(b15)(a15)bab15aab15b15(ab)15练习51.(12131415)(13141516)(1213141516)(131415)2.(1 819110111)(19110111112)(1819110111112)(19110111)3.(1 11999 12000 12001)( 11999 12000 12001 12002)(1 11999 12000 12001 12002)( 11999 12000 12001)第六周 转化单位“1”(一)专题简析把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。如果甲是乙的ab ,乙是丙的cd ,则甲是丙的acbd ;如果甲是乙的ab ,则乙是甲的ba ;如果甲的ab 等 于乙的cd ,则甲是乙的cd ab bcad ,乙是甲的ab ab adbc 。例题1。乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几23 45 815练习11. 乙数是甲数的34 ,丙数是乙数的35 ,丙数是甲数的几分之几2. 一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几 3. 一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。他醒来时,发现剩下的路程是他睡着前所行路程的14 。想一想,剩下的路程是全程的几分之几他睡着时火车行了全程的几分之几例题2。 六年级数学奥数培训资料 -13- 修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45 ,第二周修了多少米解一800014 45 1600(米)解二8000(14 45 )1600(米)答第二周修了1600米。练习2用两种方法解答下面各题1. 一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114 倍,第二次用去黄沙多少吨2. 大象可活80年,马的寿命是大象的1 2 ,长颈鹿的寿命是马的78 ,长颈鹿可活多少年3. 仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨例题3。晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页解 15【(114 )25 14 】300(页)答这本书有300页。练习3 1. 有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35 ,还剩90吨没有运。这批货物有多少吨2. 修路队在一条公路上施工。第一天修了这条公路的14 ,第二天修了余下的23 ,已知这两天共修路1200米,这条公路全长多少米3. 加工一批零件,甲先加工了这批零件的25 ,接着乙加工了余下的49 。已知乙加工的个数比甲少200个,这批零件共有多少个例题4。男生人数是女生人数的45 ,女生人数是男生人数的几分之几 解把女生人数看作单位“1”。 145 54把男生人数看作单位“1”。 5454练习41 停车场里有小汽车的辆数是大汽车的34 ,大汽车的辆数是小汽车的几分之几 六年级数学奥数培训资料 -14- 2 如果山羊的只数是绵羊的67 ,那么绵羊的只数是山羊的几分之几3 如果花布的单价是白布的135 倍,则白布的单价是花布的几分之几例题5。甲数的13 等于乙数的14 ,甲数是乙数的几分之几,乙数是甲数的几倍解 14 13 34 13 14 113答甲数是乙数的34 ,乙数是甲数的113 。练习5 1. 甲数的34 等于乙数的25 ,甲数是乙数的几分之几乙数是甲数的几分之几2. 甲数的123 倍等于乙数的56 ,甲数是乙数的几分之几乙数是甲乙两数和的几分之几3. 甲数是丙数的34 ,乙数是丙数的25 ,甲数是乙数的几分之几乙数是甲数的几分之几(想一想这题与第一题有什么不同)答案练1 1、 920 2、 58 3、 18 38练2 1、 7.5(吨) 2、 35(年) 3、 8吨练3 1、 150吨 2、 1600米 3、 1500个 练4 1、 113 2、116 3、 58练5 1、 815 178 2、 12 23 3、178 815第七周 转化单位“1”(二)专题简析我们必须重视转化训练。通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。例题1。甲数是乙数的2 3 ,乙数是丙数的34 ,甲、乙、丙的和是216,甲、乙、丙各是多少解法一把丙数看所单位“1”那么甲数就是丙数的34 23 12 ,丙216(134 34 23 )96乙9634 72 六年级数学奥数培训资料 -15- 甲7223 48解法二可将“乙数是丙数的34 ”转化成“丙数是乙数的43 ”,把乙数看作单位“1”。乙216(23 143 )72甲7223 48丙7234 96解法三将条件“甲数是乙数的23 ”转化为“乙数是甲数的32 ”,再将条件“乙数是丙数的34 ”转化为“丙数是乙数的4 3 ”,以甲数为单位“1”。甲216(132 32 43 )48乙4832 72丙7243 96答甲数是48,乙数是72,丙数是96。练习1下面各题怎样计算简便就怎样计算1. 甲数是乙数的56 ,乙数是丙数的34 ,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少 2. 橘子的千克数是苹果的23 ,香蕉的千克数是橘子的12 ,香蕉和苹果共有220千克,橘子有多少千克3. 某中学的初中部三个年级中,初一的学生数是初二学生数的910 ,初二的学生数是初三学生数的114倍,这个学校里初三的学生数占初中部学生数的几分之几例题2。红、黄、蓝气球共有62只,其中红气球的35 等于黄气球的23 ,蓝气球有24只,红气球和黄气球各有多少只解法一将条件“红气球的35 等于黄气球的23 ”转化为“黄气球的只数是红气球的(35 23 )910 ”。先求红气球的只数,再求出黄气球的只数。 红气球(6224)(135 23 )20(只)黄气球62242018(只)解法二将条件“红气球的35 等于黄气球的23 ”转化为“红气球的只数是黄气球的(23 35 )109 ”。先求黄气球的只数,再求出红气球的只数。黄气球(6224)(123 35 )18(只) 六年级数学奥数培训资料 -16- 红气球62241820(只)答红气球有20只,黄气球有18只。练习21. 甲数的23 等于乙数的56 ,甲、乙两数的和是162,甲、乙两数各是多少2. 今年8月份,甲所得的奖金比乙少200元,甲得的奖金的23 正好是乙得奖金的47 ,甲、乙两人各得奖金多少元3. 商店运来香蕉、苹果和梨子共900千克,香蕉重量的14 等于苹果重量的13 ,梨子的重量是200千克。香蕉和苹果各多少千克例题3。 已知甲校学生数是乙校学生数的25 ,甲校的女生数是甲校学生数的310 ,乙校的男生数是乙校学生数的2150 ,那么两校女生总数占两校学生总数的几分之几解法一把乙校学生数看作单位“1”。【25 310 (12150 )】(125 )12解法二把甲校学生数看作单位“1”(52 52 2150 310 )(152 )12答甲、乙两校女生总数占两校学生总数的12 。练习3 1. 在一座城市中,中学生数是居民的15 ,大学生是中学生数的14 ,那么占大学生总数的25 的理工科大学生是居民数的几分之几2. 某人在一次选举中,需34 的选票才能当选,计算23 的选票后,他得到的选票已达到当选票数的56 ,他还要得到剩下选票的几分之几才能当选3. 某校有35 的学生是男生,男生的120 想当医生,全校想当医生的学生的34 是男生,那么全校女生的几分之几想当医生例题4。仓库里的大米和面粉共有2000袋。大米运走25 ,面粉运作110 后,仓库里剩下大米和面粉正好相 等。原来大米和面粉各有多少袋解法一将大米的袋数看作单位“1”(125 )(1110 )232000(123 )1200(袋)20001200800(袋) 六年级数学奥数培训资料 -17- 解法二将面粉的袋数看作单位“1”(1110 )(125 )322000(132 )800(袋)20008001200(袋)答大米原有1200袋,面粉原有800袋。练习41. 甲、乙两人各准备加工零件若干个,当甲完成自己的23 、乙完成自己的14 时,两人所剩零件数量相等,已知甲比乙多做了70个,甲、乙两人各准备加工多少个零件2. 一批水果四天卖完。第一天卖出180千克,第二天卖出余下的27 ,第三、四天共卖出这批水果的一 半,这批水果有多少千克3. 甲、乙两人合打一篇书稿,共有10500字。如果甲增加他的任务的20,乙减少他的任务的20,那么甲打的字数就是乙的2倍,问两人原来的任务各是多少例题5。400名学生参加植树活动,计划每个男生植树20棵,每个女生植树15棵。除抽出25的男生搞卫生外,其他的同学都按计划完成了植树任务。问共植树多少棵解 20(125)400200.754006000(棵)答共植树6000棵。练习5 1. 有一块菜地和一块麦地,菜地的一半和麦地的13 放在一起是13公顷,麦地的一半和菜地的13 放在一起是12公顷,那么,菜地有多少公顷2. 师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟。两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个3. 有5元和2元的人民币若干张,其金额之比为154。如果5元人民币减少6张,则两种人民币的张数相等。求原来两种人民币的张数各是多少答案练1 1、 丙数64 乙数48 甲数40 2、 110千克 3、827练2 1、 乙数72 甲数90 2、 乙1400元 甲1200元3、 香蕉400千克 苹果300千克 练3 1、150 2、 38 3、 140练4 1、 乙56个 甲126个 2、 600千克 3、 甲6000字 乙4500字练5 1、 18公顷 2、 徒弟60个 师傅108个3、 2元币12张 5元币18张 六年级数学奥数培训资料 -18- 第8讲 转化单位“1”(三)一、知识要点解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。二、精讲精练【例题1】有两筐梨。乙筐是甲筐的3/5,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的7/9。甲、乙两筐梨共重多少千克解5(5/(53)9/(79))80(千克)答甲、乙两筐梨共重80千克。练习11某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入少先队 组织。这样,少先队员的人数是非少先队员的7/8。低年级有学生多少人2王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现了2个不合格产品,这时算出产品的合格率是94。合格产品共有多少个3某校六年级上学期男生占总人数的54,本学期转进3名女生,转走3名男生,这时女生占总人数的48。现在有男生多少人【例题2】某学校原有长跳绳的根数占长、短跳绳总数的3/8。后来又买进20根长跳绳,这时长跳绳的根数占长、短跳绳总数的7/12。这个学校现有长、短跳绳的总数是多少根解法一根据短跳绳的根数没有变,我们把短跳绳看作单位“1”。可以得出原来的长跳绳根数占短跳绳根数的3/(8-3),后来长跳绳是短跳绳的7/(12-7)。这样就找到了20根长跳绳相当于短跳绳的(7/(12-7)3/(8-3)),从而求出短跳绳的根数。再用短跳 绳的根数除以(17/12)就可以求出这个学校现有跳绳的总数。即20【7/(12-7)3/(8-3)】(17/12)60(根)解法二把短跳绳看作单位“1”,原来的总数是短跳绳的8/(8-3),后来的总数是短跳绳的12/(12-7)。所以20(12/(12-7)8/(8-3))(17/12)60(根)答这个学校现有长、短跳绳的总数是60根。练习21阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学后,看数的同学中,女同学占4/7,原来阅览室一共有多少名同学在看书2一堆什锦糖,其中奶糖占45,再放入16千克其他糖后,奶糖只占25,这堆糖中有奶糖多少千克3数学课外兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生就只占2/5 六年级数学奥数培训资料 -19- 了,这个小组现有女生多少人【例题3】有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩长度的3/5,每段布用去多少米解 40(4030)(13/5)15(米)答每段布用去15米。练习31有两根塑料绳,一根长80米,另一根长40米,如果从两根上各剪去同样长的一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米2今年父亲40岁,儿子12岁,当儿子的年龄是父亲的5/12时,儿子多少岁3仓库里原来存大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所剩的大米袋数时面粉的3/4,仓库里原有大米和面粉各多少袋 4甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路时其他三个队的1/2,乙队筑的路时其他三个队的1/3,丙队筑的路时其他三个队的1/4,丁队筑了多少米【例题4】某商店原有黑白、彩色电视机共630台,其中黑白电视机占1/5,后来又运进一些黑白电视机。这时黑白电视机占两种电视机总台数的30,问又运进黑白电视机多少台解 630(11/5)(130)63090(台)答又运进黑白电视机90台。练习41书店运来科技书和文艺书共240包,科技书占1/6。后来又运来一批科技书,这时科技书占两种书总和的3/11,现在两种书各有多少包 2某市派出60名选手参加田径比赛,其中女选手占1/4,正式比赛时,有几名女选手因故缺席,这样女选手人数占参赛选手总数的2/11。问正式参赛的女选手有多少人3把12千克的盐溶解于120千克水中,得到132千克盐水,如果要使盐水中含盐8,要往盐水中加盐还是加水加多少千克4东风水果店上午运进梨和苹果共1020千克,其中梨占水果总数的1/5;下午又运进梨若干千克,这时梨占两种水果总数的2/5,下午运进梨多少千克【例题5】一堆煤,运走的比总数的2/5多120吨,剩下的比运走的5/6多60吨,这堆煤原有多少吨解(1201205/660)(12/52/55/6)1050(吨)答这堆煤原有1050吨。练习5 1修一条路,第一天修了全长的2/5多60米,第二天修的长度比第一天的3/4多35 六年级数学奥数培训资料 -20- 米,还剩100米没有修,这条路全长多少米2修一条路,第一天修了全长的2/5多60米,第二天修的长度比第一天的3/4少35米,这两天共修路420米,这条路全长多少米3某工程队修筑一条公路,第一天修了全长的2/5,第二天修了剩下部分的5/9又20米,第三天修的是第一天的1/4又30米,这样,正好修完,这段公路全长多少米第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方 便计算),然后求出解答。二、精讲精练【例题1】如果,,那么()个。解由第一个等式可以设3,2,代入第二式得5,再代入第三式左边是12,所以右边括号内应填4。说明本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。练习11已知,,,问()个。2五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米3甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45 吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多哪个最少最多的比最少的多多少吨【例题2】足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15(11/5)18元,则降价后每张票价为1829元,每张票降价1596元。即1515(11/5)26(元)答每张票降价6元。说明如果设原来有a名观众,则每张票降价 1515a(11/5)2a6(元) 六年级数学奥数培训资料 -21- 练习21某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分2游泳池里参加游泳的学生中,小学生占30,又来了一批学生后,学生总数增加了20,小学生占学生总数的40,小学生增加百分之几3五年级三个班的人数相等。一班的男生人数和二班的女生人数相等,三班的男生是全部男生的2/5,全部女生人数占全年级人数的几分之几【例题3】小王在一个小山坡来回运动。先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。【思路导航】题中四个速度的最小公倍数是1200,设一个单程是1200米。则 (1)四个单程的和120044800(米)(2)四个单程的时间分别是;12002006(分)12002405(分)12001508(分)12002006(分)(3)小王的平均速度为4800(6586)192(米)答小王的平均速度是每分钟192米。练习31小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原 路下山的平均速度。2张师傅骑自行车往返A、B两地。去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米3小王骑摩托车往返

    注意事项

    本文(小学奥数举一反三六年级1--40讲.pdf)为本站会员(两袖清风巴腊拉)主动上传,第二文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第二文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    copyright@ 2019-2020 第二文库网站版权所有
    经营许可证编号:鄂ICP备19026039号

    1